

ABOVE-GROUND FIRE HYDRANT type LNH2

<Two in one = hydrant + isolating pre-valve>

<Dual reliability = possibility of use (closing from below)
even when the regular closing (from above) is malfunctioning>
<high flow rate (Kv = 278 m³/h) = less fire damage>

PROCUREMENT DATA: *1

- *Name: Above-ground fire hydrant **with break system**
- *Made in accordance with the SRPS EN14384 standard, type "C" *2
- *Nominal sizes DN100, PN16. * Closing with the main valve "from above".
- *With isolation "pre-valve", closing "from below". * With control valve.
- *Activation without or with an additional tool.
- *The possibility of blocking unauthorized use.
- *Flow (for Di=2x65; Kv=min.270m³/h)
- *Activation moment: MOT=max.65Nm.
- *Repair of the main valve; the other hydrants remain in operation, without digging up the ground and without dismantling the hydrant.
- *Drainage system "all outside"; repair without dismantling the hydrant.
- *Outlets tiled toward the ground by 25°.
- *Breakage due to force F; no damage to the lower part of hydrant. *3
- * Breaking moment M=max.1500daN.*3
- *Inlet connection: Flange EN1092-2 (Du100, PN16) (Du150, PN16) *3
 - Particular request, "describe"
- *Normal height Hi: (1350) (1550) (1850)mm
 - Particular request, "specify"
- *Outlets Di: (2x65+1x100)mm
- *Outlet couplings: (2xB+1xA) DIN, system "storz"
 - Specify label and standard
 - (D1) (D2)
- *Drainage system: Without
- * Medium: Water (technical) (drinking)
- * Colors of external surfaces:
 - aboveground part (without pipe): red
 - underground part: black
 - special request
- *Warranty period: 5 years.
- *Deliver documents:
 - "Brochure";
 - "Test Report", issued by an "authorized body";
 - "Certificate of Conformity", issued by an "authorized body";
- *1 → If necessary, "omit/add"
- *2 → The standard determines the min. performance
="the least good allowed" hydrant.

Appearance:

1. Inlet flange
2. Isolation "pre-valve"(closing from below)
3. Obturator - "main valve" (closing from above)
4. Body

4.1 Place of breaking, due to the impact of force F

5. Cap (keyless activation)

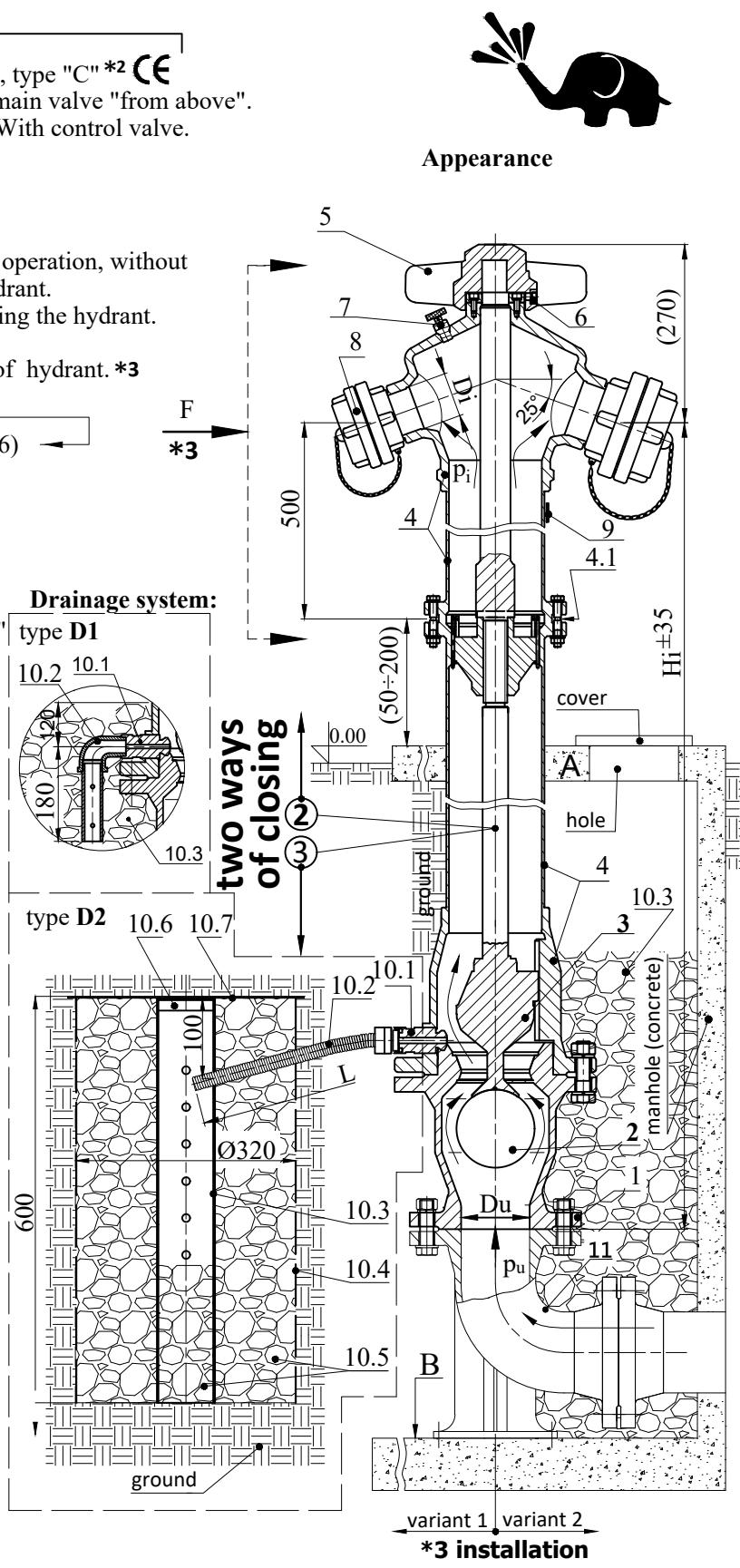
6. Blocking of unauthorized use

7. Control valve (safety; sealing)

8. Outlet couplings 9. Ident plate ("CE", "Kv",...)

10. **Drainage system:** (not defined by the standard)

type D1:


- 10.1 Drain valve 10.2 Drain pipe
- 10.3 Stone → (16÷31)mm*4

type D2:

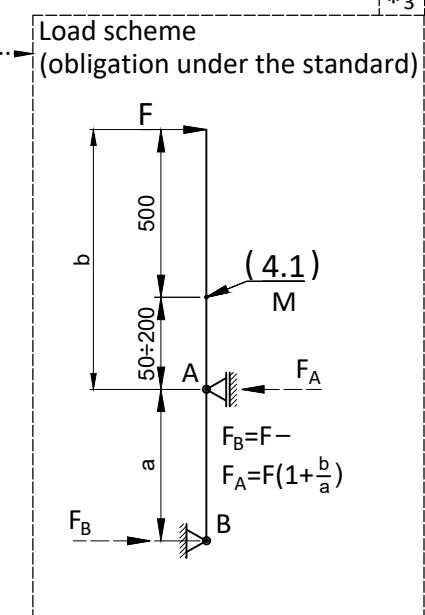
- 10.1 Drain valve 10.2 Drain pipe →(L=?mm)
- 10.3 Distribution pipe 10.4 Wire basket*4
- 10.5 Stone → (16÷31)mm*4
- 10.6 Cover 10.7 Plastic foil*4
- 11. Arch with foot EN545*4

*4 → Provided by the buyer

Appearance

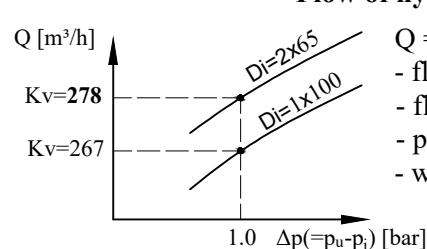
ABOVE-GROUND FIRE HYDRANT type LNH2

<Two in one = hydrant + isolating pre-valve>


<Dual reliability = possibility of use (closing from below)
even when the regular closing (from above) is malfunctioning>
<high flow rate ($K_v = 278 \text{ m}^3/\text{h}$) = less fire damage>

Basic technical characteristics:

- * Safe = compliant with the requirements of the EN 14384 standard = €
- * Purpose: Taking water from underground pipelines for fire fighting and communal needs
- * See "Procurement data" P1/2
- * Flow: $K_v = 278 \text{ m}^3/\text{h}$, for $D_i = 2 \times 65$
- * Activation moment MOT: max. 55Nm, (Class 1)
- * Breaking force $F = 1350 \text{ daN}$
- * Foundation
- * Weight $\sim (57 \div 94) \text{ daN}$ for $H_i (1350 \div 1850) \text{ mm}$
- * Materials:
 - hydrant body castings nodular cast,
 - cap, and output couplings aluminium,
 - sealants polypropylene/elastomers,
 - pipe of body, spindle, and obturator seat stainless steel,


Advantages:

- * Two ways of use = dual reliability:
 - closing with the main valve (3), from above (regular work),
 - closing with a pre-valve (2), from below (extraordinary work),
- * Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:
 - that the other hydrants remain in operation even when the main valve (3) is malfunction,
 - to omit a separate isolation valve in front of the hydrant,
 - lower cost of procurement and maintenance of the hydrant network,
 - the use of a hydrant even when the main valve (3) is malfunction,
- * Large flow: ($K_v = 278 \text{ m}^3/\text{h}$; for $D_i = 2 \times 65$); minor fire damage.
- * Control valve (7) = great safety of the executor, prevention of hydrant freezing.
- * Activation without additional tools, by turning the cap (5).
- * Easy activation: (class 1, MOT < 55 Nm) longer service life.
- * Possibility of blocking (6) unauthorized use.
- * High reliability of closing reliability; impermeability even after 1000 closures.
- * Outlet tilted (25°) down, longer service life of fire hoses.
- * The main valve seal is conical, self-flushing = dirt retention prevented = longer service life.
- * Very easy hydrant maintenance:
 - Replacing the main valve seal (3); without digging up the ground and without dismantling the body (4).
 - Possibility (7) of checking the correctness of the drain and main valve.
 - Repair of the drainage valve (10.1); from the outside, partial excavation, and without dismantling the hydrant.
- * Long warranty period 5 years.
- * Probably the best, and the most economical hydrant available.

Documents accompanying the delivery of hydrant:

- * Declaration of Performance,
or Certificate of Constancy of Performance
- * Instruction for safety work (installation,
handling, inspection, maintenance, warranty)

$Q = K_v \times (1000 \Delta p / \rho)^{1/2}$

- flow $Q [\text{m}^3/\text{h}]$
- flow coefficient $K_v [\text{m}^3/\text{h}]$
- pressure difference $\Delta p [\text{bar}]$
- water density $\rho [\text{kg/m}^3]$